

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1 Executive Summary

On 2023.08.28, the SlowMist security team received the UXUY Protocol team's security audit application for

UXUY Protocol Phase2, developed the audit plan according to the agreement of both parties and the

characteristics of the project, and finally issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a

complete security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the

internal running status, mining weaknesses.

White box

testing

Based on the open source code, non-open source code, to detect whether there are

vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi

project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is

strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is

recommended to fix medium-risk vulnerabilities.

Low

Low severity vulnerabilities may affect the operation of the DeFi project in certain

scenarios. It is suggested that the project team should evaluate and consider whether

these vulnerabilities need to be fixed.

Weakness
There are safety risks theoretically, but it is extremely difficult to reproduce in

engineering.

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart

contract:

Serial Number Audit Class Audit Subclass

1 Overflow Audit -

2 Reentrancy Attack Audit -

3 Replay Attack Audit -

4 Flashloan Attack Audit -

5 Race Conditions Audit Reordering Attack Audit

6 Permission Vulnerability Audit

Access Control Audit

Excessive Authority Audit

7 Security Design Audit

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any

potential problems.

Serial Number Audit Class Audit Subclass

7 Security Design Audit

Block data Dependence Security Audit

tx.origin Authentication Security Audit

8 Denial of Service Audit -

9 Gas Optimization Audit -

10 Design Logic Audit -

11 Variable Coverage Vulnerability Audit -

12 "False Top-up" Vulnerability Audit -

13 Scoping and Declarations Audit -

14 Malicious Event Log Audit -

15 Arithmetic Accuracy Deviation Audit -

16 Uninitialized Storage Pointer Audit -

3 Project Overview

3.1 Project Introduction

UXUY Protocol is a cross-chain interoperability solution that empowers Web3 projects and users to seamlessly

swap tokens across multiple chains. The UXUY protocol is mainly composed of three parts: Protocol,

Swap/Bridge and Swap/Bridge Adapter. Users can only perform token swap and cross-chain operations through

the Protocol contract. The Protocol contract will call Swap/Bridge according to the external incoming path to

select the required Adapter contract for swap or cross-chain operations. This audit of the UXUY protocol is an

iterative audit based on the previous audit.

The following is a brief architecture diagram:

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
Maximum approval

issue
Others Suggestion Acknowledged

N2 Risk of over-privilege
Authority Control

Vulnerability Audit
Medium Acknowledged

N3

try-catch does not

check the cause of

the error

Design Logic Audit Suggestion Acknowledged

N4

Potential risks of

using the protocol

for nefarious

purposes

Design Logic Audit Suggestion Acknowledged

N5

Parameter status is

not checked when

modifying it

Design Logic Audit Suggestion Acknowledged

N6
Incorrect function

modifier

Gas Optimization

Audit
Suggestion Acknowledged

4 Code Overview

4.1 Contracts Description

Audit Version:

https://github.com/uxuycom/uxuy-protocol-contracts

commit: 09a3845ad89be942c734083344c920f32567aa31

The main network address of the contract is as follows:

Contract Name Contract Address Chain

Open Source or

Not

UxuySwap
0x9800f9ee815a6a4063bc0297435d

b64abc5bdf6b
Ethereum ✖

UxuyBridge
0xfb042c97263e5fcc951ab88ed7bb

28d997ce7a60
Ethereum ✖

UxuyProtocol
0x15d1ff81455D40e7ABcB0Ca5217

24f76ABaddB0a
Ethereum ✔

UniswapV2SwapAda

pter

0xC7c29E0bD443AFf2c5AE18e7a54

B95487F09A1d8
Ethereum ✖

UniswapV3SwapAda

pter

0x031E5274FE6A6143B6Aec081783

769D54Fe004ee
Ethereum ✖

OneInchSwapAdapt

er

0x6c6bf364202bfbeca2977cc8f7de1

94b45d1a74c
Ethereum ✖

UPoolBridgeAdapter
0xec7Db1A2e39b532b84f2f554933

0eb1485953743
Ethereum ✖

Timelock
0xe4EFB6e54755A3d570FEBc784aa

4751fcB5e3ab9
Ethereum ✔

UxuySwap
0x83B4efeC5A51D69C66563Deba2

4a6377b906197e

Binance Smart

Chain
✖

UxuyBridge
0x79053f0CCe8a93Ee5D3Fd0428fb

8a926635b9D1A

Binance Smart

Chain
✖

UxuyProtocol
0x7B458DBE4E7a693BE2e691DEdD

ff4607104f1266

Binance Smart

Chain
✔

UniswapV2SwapAda

pter

0x6073D44F8eF4e5cBfc8fA8646c32

96752806732c

Binance Smart

Chain
✖

UniswapV3SwapAda

pter

0x66C2269392b193075d4B8CA0af4

F7C8419ea0d8f

Binance Smart

Chain
✖

Contract Name Contract Address Chain

Open Source or

Not

BakerySwapAdapter
0xc68796a03c9246925986bCfCA81

B2451114ED2Af

Binance Smart

Chain
✖

OneInchSwapAdapt

er

0xEB2456F422Bf6d7CE0b5c40A946

be09Afa93F42e

Binance Smart

Chain
✖

StargateBridgeAdapt

er

0x6050406fd854879D9D98833B446

9DC2a59A8180c

Binance Smart

Chain
✖

UPoolBridgeAdapter
0xd4fdD4588b4202411548C3DbDD

5f4Fb763bC2E9E

Binance Smart

Chain
✖

Timelock
0xF00a05F73cc002255Dae7408D52

f3865f59A39dd

Binance Smart

Chain
✔

UxuySwap
0x3d8fd8EBC5530342B77E0172E7E

F0627417a1CBA
Arbitrum One ✖

UxuyBridge
0x4f34fd6de52373F8393C137EFc87

a58Ed36bBfdD
Arbitrum One ✖

UxuyProtocol
0x1ec64dECd438537D1CE5061fE8a

Eb9d5078788de
Arbitrum One ✔

UniswapV2SwapAda

pter

0x7A483fAb45df29D26e69854771d

04f23642F0aa5
Arbitrum One ✖

UniswapV3SwapAda

pter

0x84aDA12d9e4b7991bE3f127Bc77

20f93F8473FD7
Arbitrum One ✖

OneInchSwapAdapt

er

0x5b657f905c1887706c44a408580f

b46e1a315bf2
Arbitrum One ✖

UPoolBridgeAdapter
0xEEb24183819F5c36475736e4815

d172E826D197b
Arbitrum One ✖

Timelock
0xbFc78b288854908b2d54622aabe

F5A5323CE30f6
Arbitrum One ✔

UxuySwap
0x468A838f95866DC7558239C2b62

304E7c90cb27d
Avalanche C-Chain ✖

UxuyBridge
0x7A483fAb45df29D26e69854771d

04f23642F0aa5
Avalanche C-Chain ✖

UxuyProtocol
0x137a06a85e4557ef91244966d2b

7f77a1b3481c3
Avalanche C-Chain ✔

UniswapV2SwapAda

pter

0xEEb24183819F5c36475736e4815

d172E826D197b
Avalanche C-Chain ✖

Contract Name Contract Address Chain

Open Source or

Not

UniswapV3SwapAda

pter

0x84CE440919a003599c02C3f452F2

0d5AB0E8ad8C
Avalanche C-Chain ✖

OneInchSwapAdapt

er

0xA2AC3F036E761fB2418a98f0C26

48EbEc20958F6
Avalanche C-Chain ✖

UPoolBridgeAdapter
0x905F0f32007dfD9833aeA796d22

D181b206a5dB6
Avalanche C-Chain ✖

Timelock
0x3d8fd8EBC5530342B77E0172E7E

F0627417a1CBA
Avalanche C-Chain ✔

UxuySwap
0x8818F58784b4cDa3150cA887abD

0c45bBb26B4Df
Fantom Opera ✖

UxuyBridge
0x2dF4a9076Fe14B00309635eA68F

301bE2e0AFC6E
Fantom Opera ✖

UxuyProtocol
0xcF55b66034C64dD441ddB8aBBd

8693B062461DFC
Fantom Opera ✔

UniswapV2SwapAda

pter

0x03de74632AC9cFE86BBb3BaEc37

11e6706f1189b
Fantom Opera ✖

UniswapV3SwapAda

pter

0x4e5426397000174833fbfd2ece7a

b7d4f12d7f01
Fantom Opera ✖

OneInchSwapAdapt

er

0xd07463f87e2f1af16febe782e12c8

ab90e881510
Fantom Opera ✖

UPoolBridgeAdapter
0xc8e49A5e0447b99C13aad795428

12858D4220b24
Fantom Opera ✖

Timelock
0xa0B24AFa81E77e65185d2a96d8D

14AC33d12d98A
Fantom Opera ✔

UxuySwap
0x7954480Caa4ff4601b1e0964e164

884b14Ad7910
Optimism ✖

UxuyBridge
0xBa5eb65b16D4d22288d548E0b6

Ac474cd893a195
Optimism ✖

UxuyProtocol
0xC7c29E0bD443AFf2c5AE18e7a54

B95487F09A1d8
Optimism ✔

UniswapV2SwapAda

pter

0xBbc38E6e3352eb6F6dF8b0240b0

aC709dA1DB00c
Optimism ✖

UniswapV3SwapAda

pter

0xec7Db1A2e39b532b84f2f554933

0eb1485953743
Optimism ✖

Contract Name Contract Address Chain

Open Source or

Not

OneInchSwapAdapt

er

0x8a0961681a48b64e95a5467600ff

b782d9f7c07c
Optimism ✖

UPoolBridgeAdapter
0xc4f6d317163eF2A0C7a9Da1eACE

3Eb73eA7C4Af8
Optimism ✖

Timelock
0xf15B31A7d7064905006CC765C42

7537F05530090
Optimism ✔

UxuySwap
0xfC1586605cf97292f78FF97267d7

8490708fEbD0
Polygon ✖

UxuyBridge
0x49BDE1fC86922e9a2E744e0c12D

b9384e6484EF0
Polygon ✖

UxuyProtocol
0x137A06a85e4557Ef91244966D2b

7f77a1b3481c3
Polygon ✔

UniswapV2SwapAda

pter

0x512C1AACd3D81cd22e8AC17229

5a15F4D53196ed
Polygon ✖

UniswapV3SwapAda

pter

0x505891a5A9b81fc2078c3c441bC5

166A61FE33bb
Polygon ✖

OneInchSwapAdapt

er

0xdf7c75b585d0878b30d0cd02587

87ca688d2d904
Polygon ✖

StargateBridgeAdapt

er

0x013cCeD2fbeA59Aee73afb765Db

ffA7F0C979cD2
Polygon ✖

UPoolBridgeAdapter
0x9774ef62cF1F5985f1F2ee21d1e8

c631a470f626
Polygon ✖

Timelock
0x83B4efeC5A51D69C66563Deba2

4a6377b906197e
Polygon ✔

UxuySwap
TSNBFBojQ2TTx22sKpGVPFnjavv4c

D4R2k
TRON ✖

UxuyBridge
TKbMQrhxh5ytdzswRhArLPS4XFzUp

BAsoi
TRON ✖

UxuyProtocol
TF8UrzKTXx1kMyG7oigcbuTNUNua

UET7JS
TRON ✖

UniswapV2SwapAda

pter

TKAgimGwJqrjyTjp6foaQyiA9juF4oq

LtA
TRON ✖

UPoolBridgeAdapter
TDuTc9J2RpD7M3vaXtSUuvxHFBQ9

BRtsLe
TRON ✖

Contract Name Contract Address Chain

Open Source or

Not

Timelock
TMsn19oosUoZoZA58MQypUA6yD

WY4GhAsq
TRON ✔

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

UxuyProtocol

Function Name Visibility Mutability Modifiers

<Constructor> Public
Can Modify

State
-

swapContract External - -

bridgeContract External - -

feeDenominator External - -

feeRate External - -

feeShareRate External - -

isFOCAccount External - -

setContract External
Can Modify

State
onlyAdmin

setFeeRate External
Can Modify

State
onlyAdmin

setFeeRecipient External
Can Modify

State
onlyAdmin

updateFOCAccoun

ts
External

Can Modify

State
onlyAdmin

updateFeeTokens External
Can Modify

State
onlyAdmin

trade External Payable
whenNotPaused noDelegateCall

nonReentrant checkDeadline

UxuyProtocol

_setContract Internal
Can Modify

State
-

_setFeeRate Internal
Can Modify

State
-

_setFeeRecipient Internal
Can Modify

State
-

_findFeeToken Internal - -

_payExtraFee Internal
Can Modify

State
-

_payFee Internal
Can Modify

State
-

_needPayFee Internal - -

_safeTransfer Internal
Can Modify

State
-

_tokenOut Internal - -

UxuyBridge

Function Name Visibility Mutability Modifiers

supportSwap External - -

bridge External
Can Modify

State

whenNotPaused onlyAllowedCaller

noDelegateCall

_getAdapter Internal - -

UxuySwap

Function Name Visibility Mutability Modifiers

swap External
Can Modify

State

whenNotPaused onlyAllowedCaller

noDelegateCall

_getAdapter Internal - -

StargateBridgeAdapter

Function Name Visibility Mutability Modifiers

<Constructor> Public
Can Modify

State
-

updateAcceptedToke

ns
External

Can Modify

State
onlyOwner

supportSwap External - -

bridge External Payable
whenNotPaused onlyAllowedCaller

noDelegateCall

UPoolBridgeAdapter

Function Name Visibility Mutability Modifiers

<Constructor> Public
Can Modify

State
-

updateAcceptedToke

ns
External

Can Modify

State
onlyOwner

updateUAgents External
Can Modify

State
onlyOwner

supportSwap External - -

bridge External Payable
whenNotPaused onlyAllowedCaller

noDelegateCall

BakerySwapAdapter

Function Name Visibility Mutability Modifiers

<Constructor> Public
Can Modify

State
-

getAmountIn External
Can Modify

State
-

getAmountOut External
Can Modify

State
-

swap External Payable
whenNotPaused onlyAllowedCaller

noDelegateCall handleWrap

_swapExactBNBForTo

kens
Internal

Can Modify

State
-

BakerySwapAdapter

_swapExactTokensFor

Others
Internal

Can Modify

State
-

OneInchSwapAdapter

Function Name Visibility Mutability Modifiers

<Constructor> Public
Can Modify

State
-

swap External Payable
whenNotPaused onlyAllowedCaller

noDelegateCall

UniswapV2SwapAdapter

Function Name Visibility Mutability Modifiers

<Constructor> Public
Can Modify

State
-

getAmountIn External
Can Modify

State
-

getAmountOut External
Can Modify

State
-

swap External Payable
whenNotPaused onlyAllowedCaller

noDelegateCall handleWrap

_swapExactETHForTok

ens
Internal

Can Modify

State
-

_swapExactTokensFor

Others
Internal

Can Modify

State
-

UniswapV3SwapAdapter

Function Name Visibility Mutability Modifiers

<Constructor> Public
Can Modify

State
-

getAmountIn External
Can Modify

State
-

getAmountOut External
Can Modify

State
-

UniswapV3SwapAdapter

swap External Payable
whenNotPaused onlyAllowedCaller

noDelegateCall handleWrap

4.3 Vulnerability Summary

[N1] [Suggestion] Maximum approval issue

Category: Others

Content

In the bridges and swaps modules of the protocol, the adapter will approve the maximum allowance to the

external protocol through the safeApproveToMax function. But in fact, the external protocol does not need to

use so much allowance. So this would violate the principle of least authorization.

Code location:

contracts/bridges/*.sol

 function bridge(

 BridgeParams calldata params

) external payable whenNotPaused onlyAllowedCaller noDelegateCall returns

(uint256, uint256) {

 ...

 IERC20(params.tokenIn).safeApproveToMax(...);

 ...

 }

contracts/swaps/*.sol

 function swap(

 SwapParams calldata params

) external payable whenNotPaused onlyAllowedCaller noDelegateCall

handleWrap(params) returns (uint256 amountOut) {

 ...

 IERC20(tokenIn).safeApproveToMax(...);

 ...

 }

Solution

It is recommended to approve as much allowance as the external protocol uses, instead of directly approving

the maximum amount of allowance, so as to avoid the unpredictable impact of future external protocol on

UXUY.

Status

Acknowledged; After communicating with the project team, the project team stated that it will not modify it in

order to save gas.

[N2] [Medium] Risk of over-privilege

Category: Authority Control Vulnerability Audit

Content

In the UxuyProtocol contract, the owner role can modify _swapContract , _bridgeContract , and _feeRate

parameters respectively through the setContract and setFeeRate functions. Because the swap and bridge of

user funds depend on _swapContract and _bridgeContract contracts.

Code location:

contracts/UxuyProtocol.sol

 function setContract(address swapContract_, address bridgeContract_) external

onlyOwner {

 setContract(swapContract, bridgeContract_);

 }

Solution

It is recommended to add a timelock contract to manage the owner role, and ensure that there is no less than

48 hours of time delay when operating sensitive parameters. At the same time, the role of suspending the

protocol in emergency situations should be added to ensure that the project team can quickly respond to

various special situations.

Status

Acknowledged; After communicating with the project team, the project team stated that it will use the timelock

contract to control the call of sensitive functions to mitigate this risk.

[N3] [Suggestion] try-catch does not check the cause of the error

Category: Design Logic Audit

Content

In the UniswapV2SwapAdapter contract, _swapExactETHForTokens and _swapExactTokensForOthers

functions are used to call the external Router contract for token swap. It will use try-catch to try to execute

the supporting fee token swap interface when the non-supporting fee token swap interface fails. However, for

supporting fee tokens, the failure to execute through the non-supporting fee token swap interface is due to the

fact that the amountOut is larger than the actual value and cannot pass the K value check during swap.

Therefore, it may be more reasonable to perform swap through the supporting fee interface only when the K

value check fails.

The same is true for BakerySwapAdapter contracts.

For example:

try...

...

catch Error(string memory reason) {

require(keccak256(abi.encodePacked(reason)) == keccak256(abi.encodePacked("UniswapV2:

K")), reason);

...

}

Code location:

contracts/swaps/UniswapV2SwapAdapter.sol

contracts/swaps/BakerySwapAdapter.sol

 function _swapExactETHForTokens(

 address[] memory path,

 address recipient,

 uint256 amountIn,

 uint256 minAmountOut

) internal returns (uint256 amountOut) {

 require(address(this).balance >= amountIn, "UniswapV2SwapAdapter: not enough

native assets in transaction");

 path[0] = WrappedNativeAsset();

 try _router.swapExactETHForTokens{value: amountIn}(minAmountOut, path,

recipient, UNEXPIRED) returns (

 ...

 } catch {

 ...

 }

 function _swapExactTokensForOthers(

 address[] memory path,

 address recipient,

 uint256 amountIn,

 uint256 minAmountOut

) internal returns (uint256 amountOut) {

 ...

 }

Solution

It is recommended to use the Error function in the catch to get the failed message and check the error message.

Status

Acknowledged; After communicating with the project team, the project team indicated that error messages are

not processed as they are returned differently between protocols.

[N4] [Suggestion] Potential risks of using the protocol for nefarious purposes

Category: Design Logic Audit

Content

In the protocol, users can pass in any specified provider/router address, which will make the protocol more

flexible and easier to use and reduce some gas costs. But be aware that this design may be used for illegal

purposes.

For example: malicious users can use the UXUYProtocol contract as the entry point of the phishing contract.

Ordinary users will trust the UXUYProtocol contract, but malicious users can replace the provider/router address

in the parameter with a malicious contract, so that the UXUYProtocol contract transfers the user's funds to the

malicious user. This will not only cause users to suffer financial losses but will also damage the reputation of

UXUY Protocol.

Code location: contracts/UxuyProtocol.sol

 function trade(

 TradeParams calldata params

)

 external

 payable

 whenNotPaused

 noDelegateCall

 nonReentrant

 checkDeadline(params.deadline)

 returns (uint256 amountOut, uint256 bridgeTxnID)

 {

 ...

 }

Solution

It is recommended to use provider and router whitelists to avoid this risk.

Status

Acknowledged; After communicating with the project team, the project team stated that this was the expected

design and would accept this risk.

[N5] [Suggestion] Parameter status is not checked when modifying it

Category: Design Logic Audit

Content

In the StargateBridgeAdapter contract, the owner role can modify the _acceptedTokens state through

updateAcceptedTokens, but it does not check whether the _acceptedTokens state of the tokens that need to

be modified is consistent with the state to be set.

The same is true for the updateAcceptedTokens and updateUAgents functions in the UPoolBridgeAdapter

contract.

Code location: contracts/bridges/*.sol

 function updateAcceptedTokens(address[] calldata tokens, bool accepted) external

onlyOwner {

 ...

 }

 function updateUAgents(address[] calldata accounts, bool uagent) external

onlyOwner {

 ...

 }

Solution

It is recommended that when modifying the status, check whether the existing status is consistent with the

status to be set. If they are consistent, there is no need to repeat the setting.

Status

Acknowledged

[N6] [Suggestion] Incorrect function modifier

Category: Gas Optimization Audit

Content

In the UniswapV2SwapAdapter and BakerySwapAdapter contracts, there are getAmountIn and getAmountOut

functions for calculating the amount of tokens required for swap. However, there is no operation to change the

storage state in its function, so the function can use the view modifier.

Code location:

contracts/swaps/BakerySwapAdapter.sol

contracts/swaps/UniswapV2SwapAdapter.sol

 function getAmountIn(

 address router,

 address[] memory path,

 uint256 amountOut

) external virtual returns (uint256 amountIn, bytes memory swapData) {

 ...

 }

 function getAmountOut(

 address router,

 address[] memory path,

 uint256 amountIn

) external virtual returns (uint256 amountOut, bytes memory swapData) {

 ...

 }

Solution

It is recommended to use the view modifier for functions that do not change state.

Status

Acknowledged

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002308300001 SlowMist Security Team 2023.08.28 - 2023.08.30 Medium Risk

Summary conclusion: The SlowMist security team uses a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 1 medium risk and 5 suggestions. All the findings were Acknowledged.

At present, some contracts are not open source, and the ownership of the admin role of the UxuyProtocol

contract has not yet been transferred to the Timelock contract, so the protocol still has the risk of excessive

privileges.

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based

on the documents and materials provided to SlowMist by the information provider till the date of the insurance

report (referred to as "provided information"). SlowMist assumes: The information provided is not missing,

tampered with, deleted or concealed. If the information provided is missing, tampered with, deleted, concealed,

or inconsistent with the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting

therefrom. SlowMist only conducts the agreed security audit on the security situation of the project and issues

this report. SlowMist is not responsible for the background and other conditions of the project.

